YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { not(x) -> xor(x, true()) , implies(x, y) -> xor(and(x, y), xor(x, true())) , or(x, y) -> xor(and(x, y), xor(x, y)) , =(x, y) -> xor(x, xor(y, true())) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { not(x) -> xor(x, true()) , implies(x, y) -> xor(and(x, y), xor(x, true())) , or(x, y) -> xor(and(x, y), xor(x, y)) , =(x, y) -> xor(x, xor(y, true())) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [not](x1) = [3] x1 + [3] [xor](x1, x2) = [1] x1 + [1] x2 + [0] [true] = [0] [implies](x1, x2) = [3] x1 + [3] x2 + [3] [and](x1, x2) = [1] x1 + [1] x2 + [2] [or](x1, x2) = [3] x1 + [3] x2 + [3] [=](x1, x2) = [3] x1 + [3] x2 + [3] This order satisfies the following ordering constraints: [not(x)] = [3] x + [3] > [1] x + [0] = [xor(x, true())] [implies(x, y)] = [3] x + [3] y + [3] > [2] x + [1] y + [2] = [xor(and(x, y), xor(x, true()))] [or(x, y)] = [3] x + [3] y + [3] > [2] x + [2] y + [2] = [xor(and(x, y), xor(x, y))] [=(x, y)] = [3] x + [3] y + [3] > [1] x + [1] y + [0] = [xor(x, xor(y, true()))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { not(x) -> xor(x, true()) , implies(x, y) -> xor(and(x, y), xor(x, true())) , or(x, y) -> xor(and(x, y), xor(x, y)) , =(x, y) -> xor(x, xor(y, true())) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))